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On the assumption that the buckling of an elastic, shallow spherical dome, rigidly clamped along a contour and loaded by a uniform 

transverse pressure, is finite and axisymmetric, its postbuckling behaviour is investigated. A solution is constructed based on the 

Marguerre equations using the Rayleigh-Ritz method with the displacements approximated by finite sums over Bessel functions. 

The system of non-linear algebraic equations obtained in this case is solved by the method of prolongation (the arc-length method). 

The effect of the wall-thinness parameter of the dome on its deformation curve is analysed. The phenomena of the generation 

of limit points in the loading trajectory, their merging and subsequent disappearance, as well as the phenomena of the joining 

of isolated loops to the main branch of the loading trajectory and of their detachment from it arc discovered. The high sensitivity 

of the dome to deviations from an ideal shape is demonstrated. 0 2002 Elsevier Science Ltd. All rights reserved. 

Three stages are involved in the solution of the complete problem of the deformation of thin-walled 
structures under the action of static loads: the determination of the non-linear stress-strain state (SSS) 
of the structure until it lose stability, the solution of the problem of the stability of the structure when 
it has a prior, non-linear, stress-strain state and finding the possible unstable states of equilibrium of 
the structure after stability is lost with subsequent attainment of a stable, postbuckling, non-linear 
stress-strain state. 

The publication of the paper by Timoshenko [l] (and his earlier paper [2] on the non-linear buckling 
of bimetallic curvilinear strips), which dealt with the snapping of a shallow hinged bar under transverse 
pressure and the determination in explicit form of its upper and lower critical loads, enabled one to 
look differently on the formulation of the problem of the loss of stability of shells which had existed 
up to now and to understand the need to employ non-linear equations in its investigation. Moreover, 
Timoshenko in his paper drew attention to the possibility of extending his results to shallow shells. It 
would not be an exaggeration to say that Timoshenko’s model actually promoted the development of 
the non-linear theory of shells. Here, it is also worth recalling the fundamental papers of Bubnov [3, 
41 on the non-linear behaviour of an infinitely long cylindrical panel under transverse pressure. 
Timoshenko’s bar model has been used in a well-founded manner [5] to analyse the non-linear, 
axisymmetric behaviour of shallow spherical shells (Fig. 1). However, it was only the publication by 
Marguerre [6] of the differential equations for thin, elastic, shallow shells for finite flexures, which are 
a natural extension of the Bubnov-Fdppl-Karman equations [3, 4, 7, 81, that enabled us to have a 
classical, compact system of equations for describing the non-linear deformation of a shell. A a result, 
it became possible to take account of non-linearity during the deformation of a shell and to obtain an 
analytic description of its snapping and of its postbuckling behaviour. This possibility was used [9] to 
solve the Marguerre equations in the case of a shallow, continuous, spherical dome under uniform 
transverse pressure by the Bubnov method with a single parameter representation of the deflection 
function and to analyse the axisymmetric, non-linear behaviour for four forms of boundary conditions. 
A system of differential equations for the finite flexures of shallow shells, which is more accurate 
compared with Marguerre’s classical equations, was subsequently derived by Reissner [lo]. 

A computerized analysis of the behaviour of shallow spherical domes, based on the Marguerre and 
Reissner equations, has been given in a number of papers [ll-161. 

These periods in the development of the theory and practice of the design of spherical shells have 
been described in detail in [17-191 and in [20, 211. 

Bach [22] was apparently the first to carry-out an experimental investigation of the behaviour of 
spherical shells. He discovered that, under a certain external pressure, a spherical shell proves to be 
unstable and dents appear in it. Much later (in 1939), Boley and Sechler (see [5]) carried out a painstaking 
experiment with a copper hemisphere, manufactured to a high precision, and established that the critical 
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experimental pressure is four times less than the theoretical value corresponding to the linear theory 
of the stability of shells (Zoeley’s formula). Similar investigations of the behaviour of shallow spherical 
domes under the uniform transverse pressure were subsequently carried out by a number of researchers 
[23-301. A detailed discussion of the work of these and many other investigators has been given in [31]. 

A comparison of the experimentally and theoretically obtained values of the critical loads of shallow 
spherical domes showed that there is considerable disagreement between them. This can be seen in 



The axisymmetric postbuckling behaviour of shallow spherical domes 607 

Fig. 2 which is taken from [31]: the dependence of the upper and lower critical loads for an 
axisymmetrically deforming, shallow spherical dome, which is rigidly clamped along its boundary, on 
its wall-thinness parameter, which is mainly defined as the ratio of the radius of curvature of the shell 
to the thickness of its wall, is represented by the solid lines. These are theoretical results obtained by 
different researchers mainly by solving Marguerre’s equations. The values of the upper critical load, 
taken from experimental papers of the investigators mentioned above, are represented by the small 
open circles. 

This disagreement between the results is associated both with the experimental conditions and with 
the special features of the mathematical model of a shell which is used. In the first place, neglect of 
initial irregularities in the shape of a shell and the initial stresses in it, the non-ideality of the loading 
conditions of the shell and its fixing around its boundary, the inhomogeneity of the properties of the 
shell material, the asymmetry of it deformation, etc. are referred to here (see [31]). However, as was 
pointed out in [31], attempts to take account in the calculations of these special features of an actual 
spherical dome and the methods used in its loading and fixing have not been successful. To this day, 
there is no set of parameters of a mathematical model of a shell, based on the Marguerre and Reissner 
equations, which would make it possible to obtain the whole spectrum of experimentally found values 
of the upper critical loading using a small variation of above parameters. 

An attempt to solve the complete problem of the snapping of a shallow spherical dome under the 
uniform transverse pressure and thereby to confirm its high sensitivity to the above-mentioned 
imperfections was one of the forms of the solution of this problem. Using the example of an ideal shell, 
such an attempt has been made by many investigators ([32-361, etc.). However, only Mescall [37] was 
successful in completely solving this problem. The trajectory of the loading by a uniform transverse 
pressure of a shallow spherical dome which is rigidly clamped along its boundary [37] is shown in 
Fig. 3: q* is the dimensionless radial pressure and wt is the relative deflection of the middle surface at 
the vertex of the dome. After the publication of [37], no one has succeeded in completely reproducing 
the process of the postbuckling deformation of a dome, and papers by Mescall himself did not follow. 
The problem of the postbuckling behaviour of a dome therefore remains unexplained to the end. 

In the light of the foregoing discussion, the aim of this paper is to solve the complete problem of the 
geometrically non-linear deformation of a shallow spherical dome, to carry out a parametric analysis 
of its deformation and to refine the dependence of the critical loads, corresponding to the limit points 
of the loading trajectories, on the wall-thinness parameter. 

1. THE MATHEMATICAL MODEL OF A DOME 

The Marguerre differential equations are the most suitable for describing finite, axisymmetric deflections 
of an elastic, shallow, spherical dome loaded with a uniform transverse pressure q. In mixed form, they 
are 

pVzF+ Eh 2 TV w+ TN*(w,w)=O 

DV*V*w- ’ * $7 F-N,(F,w)=-q; O=Sr=Sa 

Here Vz is the Laplace operation, N2 is a non-linear second-order differential operator 

<V*{ = 5” + {‘I r, N2(5,r>=(r”5’+r’5”)/r, D= Eh3/[12(1-v*)]) 

(1.1) 

a prime denotes a derivative with respect to the radial coordinate r, w is the deflection of the shell, F 
is the Airy stress function, which is connected with the specific normal forces by the following relations. 

N, = F’l r, Nee = F” 

R is the radius of curvature of the dome, E is the modulus of elasticity of its material, h is the thickness 
of its wall, D is its cylindrical stiffness and v is Poisson’s ratio of the dome material. 

In the case when the dome is rigidly-clamped along its boundary, these equations must be 
supplemented with the boundary conditions 

~=r9~=@=0 when r=O; u=Gr=w=O when r=a (1.2) 
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where u are the radial displacements of the points of the middle surface of the dome, 6, is the angle 
of rotation of the normal to the middle surface of the dome in a radial direction and Qf is the generalized 
transverse radial force 

Q,” = -D(V*w)‘+ N,6, 

Marguerre’s equations are the differential analogue of the Lagrange equilibrium equation 

&l-I-A)=0 (1.3) 

in which Al is the potential energy of the deformation of the shell and A is the work of the external load 

, o2n 

II = -j j(B[e$ +2ve,e,, +eie]+sxK +2vx,,x,, +x~,l)rdrdO, 
2 

B=Eh/(l-v’) (1.4) 
00 

a2x 

A = j j qwrdrde 
00 

Here, err, ess, x, and xOO arc the deformations and the curvatures of the middle surface of the shell 

e r,=u’-wlR+w’2/2, eeo=uIr-wIR, x,,=-wU, xee =--WI/r 

It is convenient to seek the solution of the problem of finite deflections of a shallow spherical dome 
in displacements, represented in the form of functional series (henceforth summation over i, p, q, r, s 
is carried out from 1 to K everywhere) 

u* = +u = ClljUi(P), 
I 

W* =; = c ky:w;(p) 
i 

(1.5) 

Here U, and W, are the required generalized displacements and, starting out from the structure of the 
equilibrium equation for the dome (1.1) and boundary conditions (1.2) of the problem, we specify the 
basis functions u,(p) and w,,(p), as follows: 

U,(P) = A,J, (vjp). W,(P) = C,lJ,(w,p) - h,I,(o;p)l 

Ai=L c,=’ 
I JoWl’ 

b_ - JO(Oi). 
I JoWl ’ I,(o;)’ 

i = 1,2,..., K 

where JO and Ji are zeroth and first-order Bessel functions of the first kind, I, is the modified zeroth- 
order Bessel function of the first kind, Ai, C, and b; are constants, and the parameters Vi and oi are 
sought as the roots of the following characteristic equations 

v,: J,(v)=O, co,: J,(w)/,(w)+J,(o)~,(w)=O; i=1,2 ,..., K 

Using the Rayleigh-Ritz method, the displacements in the form of (1.5) are substituted into the 
expressions for the potential energy of deformation of the shallow spherical dome and the work of the 
external load (1.4). As a result, after integrating, the potential energy of deformation and the work of 
the external load are represented by the finite sums 

+ c cS~,upWqWr+S~jl’WPWqW’)+ cs~,w,w,w,w, 
p.9.r p.q.r.s 

A = 2nDq’ h 0 
2 

XQ,w,~ 
4* = [3(1- v2)1’ qR* 

IJ P 2 Eh2 

(1.6) 

(1.7) 
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Here q* is the dimensionless transverse load, and the coefficients So’ So2 So3 S” S” S’” fly W’ .P4’ FV pV P rs’ and Qp 
of the generalized displacements are functions of their own subscripts Poisson’s ratio an d the wall- 
thinness parameter of the dome 

p =[12(1 -+I$* I(Rh)]K 

The derivation of the equations of equilibrium with respect to the generalized displacements is the 
next and last stage in the Rayleigh-Ritz method. In order to do this, the potential energy of deformation 
II and the work of the external load A, in the form of the finite sums (1.6) and (1.7) are substituted 
into Lagrange’s equation (1.3) where variation with respect to the values of the generalized displacements 
Ui and Wi is carried out. As a result, a system of non-linear algebraic equations is obtained for 
determining them, which can be written in the matrix form 

f(x) = 0 (1.8) 

f=(X&.f2dTv x =(U,ky ...U,W,q*)T 

As the vector f, we have in mind a vector composed of the partial derivatives of the total potential 
energy of deformation of the shell II -A with respect to the displacements Ui and Wi (i = 1, 2,..., K). 
The vector x, in accordance with the idea of the equality of the variables of the solution, is made up of 
the generalized displacements to which the dimensionless transverse load is added and its order is 
determined by the number of terms taken into account in the partial sums (1.5): N,,,, = 2K + 1. 

The system of non-linear algebraic equations (1.8) corresponds to a discrete model of a shallow 
spherical dome of finite deflections and the next stage in solving the problem involves the solution of 
this system of equations. 

The solution of the system of non-linear algebraic equations (1.8), the order of which is assumed to 
be equal to II here for simplicity, is constructed by the method of continuous prolongation. By analogy 
with an approach which has been described previously [38], to do this, the system of linear algebraic 
equations 

Jq = b (1.9) 

f 1.1 ‘.. f;,, &+I ‘PI 0 

J = . . . . . . . . . . . . . . . . 
f n.1 ... n.n f fn.n+, ’ q = 0, ’ b = 0 

f I.n+l ..- f E n.n+l cp II+1 b 

is solved at each step with respect to the parameter h close to the length of the loading trajectory. The 
elements of the Jacobian are calculated as the partial derivatives of the left-hand sides of the system 
of non-linear algebraic equation (1.8) with respect to the arguments of the solution, which also includes 
the loading parameter. The parameter E of system (1.9) is chosen from the condition that the matrix 
of this system should be as well-posed as possible, and the parameter b is chosen from the condition 
for the solution vector q to be close to a normalized vector: ]] q 11 = 1. As a result, the vector q which, 
from a geometrical point of view, is a tangent vector to the loading trajectory and the so-called 
prolongation vector, is the vector of the right-hand sides of the normal system of ordinary differential 
equation 

dxldi = q(x) (1.10) 

the numerical solution of which gives the coordinates of the points of the loading trajectory of the shell, 
The method of discrete prolongation [39] is used to compensate for the errors which are accumulated 

in the components of the vector x during the numerical solution of the system of prolongation equations 
(1.10). This is based on Newton’s method, implemented for an extended space of variables. In accordance 
with [39], each iteration of Newton’s method is organized by solving a system of linear algebraic equations 
of the form 

JAx=-f. 

Ax =(Ax, . ..A+x~+.)~, fo =cr; . ..f.O)' 

which enables one to refine the solution vector x at any regular point of the loading trajectory, including 
its limit points. 
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2. THE EFFECT OF THE WALL-THINNESS PARAMETER 
ON THE FORM OF THE LOADING TRAJECTORY 

If we ignore Poisson’s ratio (v = 0.3), which only varies slightly in the case of metals, the wall-thinness 
parameter p is practically the only parameter of a shallow spherical shell. It is mainly determined by 
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the apex angle cpO and its relative thickness h/R. The thicker the shell wall and the greater its apex angle, 
the greater the wall-thinness parameter ~1. If account is taken of the fact that, in the case of shallow 
spherical shells, the apex angle does not exceed 22”, then, for the range of relative thicknesses of thin 
shells h/R = l/20... l/200, the limits of variation of the wall-thinness parameter are found to be 
l_t = O-18. 

The effect of this parameter was investigated, taking as an example the deformation characteristics 
of a shell in the coordinates q* and wi over a range of values of u from 3 to 16. The results of this 
investigation are shown in Figs. 4-8. The limit points, at which the shell, under conditions of axisymmetric 
deformation, loses stability by snapping, are given the numbers 1,2,. . . . The forms of deflection of the 
dome, which correspond to its stress-strain state at these points are shown in Table 1 and Fig. 9. The 
dashes in Table 1 denote that, for the value of the wall-thinness parameter u indicated in the row being 
considered, the limit point, which is omitted from the given column of the table, does not exist in the 
loading trajectory. 

The first pair limit points 1 and 2, which determine the values of the first upper and lower critical 
loads, appears on the loading trajectory when u = 3.3. They can be seen in Fig. 4. An increase in the 
wall-thinness parameter brings about an evolutionary change in the form of the loading trajectory and, 
when p= 6.2, leads to the appearance of a second pair of limit points (3 and 4) on it. The process by 
which they are produced is seen by comparing the curves with u= 6.10 and 6.50 in Fig. 4. 

When the wall-thinness parameter is increased further, there is a jump-like increase in the critical 
loading, which corresponds to the limit point 3 and the appearance of yet another pair of limit points, 
5 and 6. Comparison of the curves the p = 6.50 and 6.55 in Figs 4 and 5 enables us to assume that the 
loop for u = 6.55 in Fig. 5 with the points 3,5 and 6 has existed for values of the wall-thinness parameter 
of less than 6.55 in a form which is isolated from the main branch, and its appearance in Fig. 5 is caused 
by its merging with the main branch. 

Increasing the wall-thinness parameter from a value of 6.55 up to 7.40 (Fig. 5) only gives rise to an 
evolutionary change in the loading trajectory but, when u = 7.44 and simultaneously with the generation 
of a third pair of limit points, 7 and 8, there is again a sharp increase in the critical load, which is 
determined by the limit point 3. This is obviously also associated with an isolated loop, which has a 
limit point 3 in Fig. 5 (u = 7.45) joining the main branch of the loading trajectory. 

When the wall-thinness parameter is changed from 7.45 to 8.20 (Figs 5 and 6) an evolutionary change 
in the loading trajectory is observed, during which the limit point 6 and 7 disappear and, when u = 8.25, 
the process, described above, of the merging of the isolated loop shown in Fig. 6 occurs. This can be 
clearly seen by comparing the curves for u = 8.20 and 8.35 in Fig. 6. 

The next qualitative change in the loading trajectory occurs when ~1 = 8.36. In Fig. 7, there are no 
loops in the main branch when p = 8.36. This may only mean that the loops with the limit points 3, 4, 
8, 9 and 10 have become detached from it and the transition of this loop into a class of isolated loops. 
This assumption is confirmed by the behaviour of the limit points 1 and 5. A comparison of Figs 5 and 
6 shows the continuous convergence of these points which, when p = 8.36, leads, to all appearance, to 
their merging. 

A further increase in the wall-thinness parameter from 8.36 up to 15.00 repeats the changes in the 
loading trajectory of a spherical dome described above for lo = 3.30-8.36. The corresponding curves 
are shown in Figs 7 and 8. Here also, an evolutionary change (see the curves with u = 8.36-12.80 and 
u = 12.90-14.90) d an a jump-like change (see the curves with u = 12.80 and 12.90) of the deformation 
curves occurs together with the generation of limit points (see the curves with I_I = 12.00 and 12.20 and 
with p = 14.00 and 14.90) and, also, the joining (see the curves with p = 12.80 and 12.90) and the 
detachment of loops as the wall-thinness parameter is increased from 14.90 up to 15.00. 

The dependence of the critical loads, corresponding to the limit points 1-12 of the loading trajectory 
shown in Figs 4-8, is shown in Fig. 10. It is a many-valued curve, the main part of which (branches 1 
and 2) describes the upper and lower critical loads (the loads of the limit points 1 and 2) and is identical 
to the known curve (see Fig. 2). The additional branches 3-12 of this curve show the generation and 
disappearance of limit points of higher orders 3-12 and the joining and detachment of loops from the 
main branch of the loading trajectory. Some of them, for example, branches 4 and 6, describe smaller 
values of the critical loads than those which are characteristic of branch 1. Under actual conditions of 
the deformation of a shallow spherical dome, these critical states naturally cannot be realized. Their 
limit points lie in unstable segments of the loading trajectory of the dome and it is impossible to reach 
them under natural deformation conditions. However, the fact that the critical state of a dome, 
corresponding to the limit point 4 (see Fig. 5, l.~ = 8.00, for example), is located sufficiently close to a 
critical state that corresponds to the first upper critical load, which is entirely realizable in an actual 
loading process, may turn out to be useful in calculating the deformation of a dome when an initial 
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imperfections in its shape increase. At the same time, consideration of the forms of deflection of the 
dome (see Table 1, u = 6.50~8.35) corresponding to the limit points 1 and 4, reveals their steady 
character. The forms of deflection do not change qualitatively when there is a substantial change in 
the wall-thinness parameter. It may therefore be assumed that the introduction of an initial imperfection, 
which is proportional to the form of its deflection corresponding to the limit point 4, into the calculation 
of the deformation of a dome may appreciably reduce the value of the first upper critical load and, to 
some extent, reduce the disagreement between the theoretical and experimental data. 

3. THE ACCURACY OF THE DETERMINATION OF THE CRITICAL LOADS 

The accuracy with which the loading trajectory of a spherical dome and its critical loads can be 
determined is governed by three facts. 

First, the adequacy of the mathematical model in describing the actual phenomena of its non-linear 
deformation. Under conditions of elastic deformation of a dome, Marguerre’s equations for shallow 
shells of finite deflection, which are used in this calculation as the mathematical model, are assumed 
to be quite accurate. Attempts have been made to refine them but the admissibility of these equations 
has never been in doubt. Here, Kirchoff’s square law for representing the deformations of its middle 
surface and the assumption that it is shallow are sources of error when solving the problem of describing 
the deformation of the shell. Judging from estimates [40,41], these errors for deflections of a shell, of 
less than ten thicknesses and shells with an apex angle not greater than 22”, do not exceed 2-5%. 

Second, the accuracy of the discretization method, that is, of the Rayleigh-Ritz method, has an effect 
on the accuracy with which the loading trajectory of a spherical dome can be constructed. The accuracy 
is determined by the accuracy of the approximation of the displacements of the shell, which can only 
be elucidated by means of a numerical experiment. With this aim, the values of the critical loads, 
corresponding to their limit points, were calculated using a different number of terms K in the sums 
(1.5) approximating the displacements for two shells with wall-thinness parameters u = 8.35 and 
u = 14.90, the trajectories of which (see Figs 6 and 8) arc the most branched. The results of these 
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calculations are shown in Table 2 for certain limit points of the loading trajectory. The dashes in this 
table mean that, for the value of the number of terms K indicated in the row under consideration, the 
limit point which is left out of the column of the table does not exist in the loading trajectory. The data 
in Table 2 show that fourteen terms in the sums which are used are quite sufficient to determine the 
critical loads of a spherical dome with a wall-thinness parameter u = 8.35 with an accuracy up to four 
significant figures and, in the case of a dome with a wall-thinness parameter p = 14.90, with an accuracy 
up to three significant figures. In the first case, the relative error in determining the critical loads does 
not exceed 0.01% and, in the second case, 0.1%. 

be 
The third fact which determines the accuracy with which the critical loads of a spherical dome can 
found is the accuracy of the solution of the system of non-linear algebraic equilibrium equations 

(1.8) by the method of prolongation. The computational basis in implementing this method is Simpson’s 
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Table 1 

CI I-- l 

3.50 B 
5.00 A 
6.10 c 
6.50 c 
6.55 c 
7.40 c 
7.45 C 
8.00 C 
8.10 C 
8.20 C 
8.35 c 
8.36 C 

3 4 5 6 7 8 9 IO 

- - 
- - 

- 

A c 
D c 
A c 
E c 
E C 
E c 
E c 
E C 
E - 

- - 
- 
- 

- - 
- 

- - - 

D D - 
D D D 
D D D 
D D D 
D D D 
D - - 
c - - 

- - 
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D - - 
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D A A 
D A C 
D F C 
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Table 2 

615 

K 91 42 93 94 95 46 

p = 8.35 

7 1.117 0.1562 - 
8 1.131 0.1487 1.810 
9 I.129 0.1470 I.830 

10 1.130 0.1471 I x44 
II 1.130 0.1471 1.737 
12 1.130 0.1472 I .744 
13 I.130 0.1472 1.741 
14 1.130 0.1472 1.741 

7 
8 
9 

IO 
II 
I2 
I3 
14 

I.138 
I.014 
0.997 
0.998 
0.993 
0.993 
0.992 
0.992 I 

-0.293 I 
-0.1549 
-0.0547 

0.0188 
0.0656 
0.0899 
0.0878 
0.0879 

F= 14.90 

2.149 
1.239 
1.214 
1.221 
1.225 
1.230 
1.214 
1.217 

- - 
0.8674 1.144 
0.8686 I.135 
0.868 I 1.134 
0.8682 1.134 
0.8682 I.135 
0.8682 1.134 
0.8683 1.134 

0.9637 
0.6603 
0.7773 
0.8624 
0.9098 
0.8995 
0.9141 
0.9144 

- 
- 

0.9993 
0.9949 
0.9949 
0.9939 
0.9938 

- 
0.9534 
0.9805 
0.9750 
0.9754 
0.9755 
0.9754 
0.9754 

- 
- 
- 

1.183 
I.179 
I.180 
I.171 
I.166 

formula for evaluating definite integrals, Gauss, method for solving systems of linear algebraic equations, 
Newton’s method for solving systems of non-linear algebraic equations and the Kutta-Merson method 
for solving the Cauchy problem. The errors in using Simpson’s formula and the Kutta-Merson method 
to solve the problem are controlled by a double recalculation using the Runge rule and do not exceed, 
with respect to their relative value, lOA for each integral in Simpson’s formula and for the norm of the 
solution in the Kutta-Merson method. The vector of the discrepancies in Newton’s method in the last 
iteration does not exceed, with respect to its norm, a value equal to 10m5 of the norm of the solution. 
Gauss’ method is used in the calculations in a version which makes a choice of the leading element at 
each step of a straight path. Its error is not monitored. However, in calculations with a seven-place digit 
grid, there is an estimate for it with respect to the norm of the solution of E - 104n, where n is the 
order of the system. In this investigation, the order of the system did not exceed thirty and the relative 
error of Gauss’ method was therefore a quantity not exceeding 1O4. 

Summing up what has been said, it can be asserted that this solution of the problem of a geometrically 
non-linear deformation of a shallow, elastic, spherical dome has been obtained with a relative error 
not exceeding 5%. 

4. CONCLUSION 

The variability of the deformation curve of a shallow, spherical dome over a range of relative thicknesses 
of its wall h/R = l/20-1/200 has an evolutionary and jump-like character. This is associated with the 
generation of limit points on the loading trajectory, and their merging and subsequent disappearance, 
and, also, the merging joining of isolated loops with the main loop of the loading trajectory and the 
detachment of them from it. These phenomena occur frequently in the case of a quite small change in 
the wall-thinness parameter of the dome, which confirms the assumption regarding its high sensitivity 
to deviations from an ideal shape. The dependence of the critical loads, corresponding to the limit points 
of the loading trajectory, on the wall-thinness parameter of the shell is described by a many-valued curve, 
the main part of which is identical to the known curve, and the additional branches show the generation 
and disappearance of limit points of higher orders. Several of them describe the values of critical loads 
which are less than the upper critical load. This fact may turn out to be useful when calculating the 
deformation of a dome taking account of initial imperfections in its shape. 
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